AI pioneer Innoplexus and phytopharmaceutical company DrD are partnering toRead More
Why pharma companies need to upgrade their intelligence
This article was originally published at PharmaPhorum.
As the Nobel-prize-winning economist, Daniel Kahneman wrote in his book Thinking, Fast and Slow, “Intelligence is not only the ability to reason; it is also the ability to find relevant material in memory and to deploy attention when needed.”
Current Artificial Intelligence (AI) software is not at a point where it can reason independently (often termed ‘Third Wave AI’). However, it can certainly extend pharmaceutical intelligence, thereby preserving human attention for creative problem-solving and making drug-development cycles more efficient.
Artificial Intelligence can help pharma companies with comprehensive datasets, speedier development cycles, interpreting data in context, and business intelligence.
Comprehensive datasets
Manually-curated research data are both expensive and notoriously unreliable. Corporate scientists report that less than 50% of academically-identified drug targets can be validated in in-house pharmaceutical experiments. This is probably due to human bias in the analysis of the results.
For effective R&D, today’s pharma companies need platforms that function as a window into the world of available information, not a high-priced collection of limited data. This means coverage and cross-referencing from multiple data sources (i.e. clinical trials, congresses, theses, nationally-available datasets, clinical data and more).
Speedier development cycles
When comprehensive data are available, they can take many years to decipher. Artificial Intelligence can confer a competitive edge to pharma companies by significantly shortening the time to achieve crucial insights. This is true of positive insights, like potential cures, and for business risks as well.
Consider the example of Tramadol, a weak prescription opioid for pain relief. When it was originally released, in 1995, it was not classified as a controlled drug because it was engineered to have little potential for abuse. However ,according to the US Drug Enforcement Agency, a national survey on drug abuse in 2012 showed 20,000 emergency room visits were as a result of Tramadol misuse. In the same year several million Americans, including teens, reported using the drug for non-medical purposes.
In 2014, Tramadol was reclassified as a controlled substance and a California lawsuit was filed against the manufacturers of Tramadol for deceptive advertising. In 2017, a coalition of 41 State Attorney Generals subpoenaed five major pharma companies and three major distributors for information about how prescription opioids were marked and sold in the US and at least nine other States had independent lawsuits with drug manufacturers.
The data on Tramadol misuse was publicly available from the American Association of Poison Control Centers, the Drug Abuse Warning Network, the National Survey on Drug Use and Health, and the National Forensic Laboratory Information System. But it took many years, from the first reports in 2005, until a pattern emerged in 2011, for the reclassification to take effect. It is possible that Artificial Intelligence software monitoring these systems could have identified a significant trend more rapidly, prevented a costly lawsuit for one of the several pharma companies involved, and also averted many senseless deaths in the opioid epidemic that followed.
Interpreting data in context
In order to interpret comprehensive datasets at speed, the data need to be structured in a similar format for comparison. However, medical data are deep, dense and diverse. They can range from spreadsheets of vital sign readings, to chemical structures, to handwritten patient charts, to editorial essays in industry-specific journals.
Artificial Intelligence can equalise widely-distributed datasets for analysis by searching these various datasets in different ways. By removing the context-specific ‘noise’ from the communication, it can reveal insights from multiple perspectives on a common query.
When this is intuitively combined with creative human intelligence, as in the case of iterative search queries or ‘search crumbs’, Artificial Intelligence can be a powerful tool for rapidly generating data-backed insights.
Business intelligence
To stay competitive and generate novel insights, companies are increasingly outsourcing R&D to small, innovative companies. Jonathan D. Rockoff estimated in 2014 that a third of current drugs in the pipelines of the top-10 pharma companies were originally developed elsewhere. This startup/corporate symbiosis works well in the technology industry as well because small, lean, agile development groups can create novel solutions faster and cheaper than large corporations.
However, like startups, small pharma R&D companies have a higher failure rate than established organisations. To achieve a competitive edge in this market requires accurate and timely insights on the collaborative potential of multiple small businesses, and in the digital era ,this means good software.
In a recent survey, 67% of corporations said they preferred forming an innovative partnership with startups at an early stage. Artificial Intelligence can parse unstructured big data from industry journals, websites, patents, and reports to identify promising collaborators from key opinion leaders, important deals and mergers, plus fast-tracked clinical trials.
In summary, Artificial Intelligence can generate comprehensive datasets and can perform data analytics more accurately and across multiple contexts. But the real competitive edge lies in pairing these analyses with creative problem-solving, and this requires human intelligence.
Featured Blogs
Machine learning as an indispensable tool for Biopharma
The cost of developing a new drug roughly doubles every nine years (inflation-adjusted) aka Eroom’s law. As the volume of data…
Find biological associations between ‘never thought before to be linked’
There was a time when science depended on manual efforts by scientists and researchers. Then, came an avalanche of data…
Find key opinion leaders and influencers to drive your therapy’s
Collaboration with key opinion leaders and influencers becomes crucial at various stages of the drug development chain. When a pharmaceutical…
Impact of AI and Digitalization on R&D in Biopharmaceutical Industry
Data are not the new gold – but the ability to put them together in a relevant and analyzable way…
Why AI Is a Practical Solution for Pharma
Artificial intelligence, or AI, is gaining more attention in the pharma space these days. At one time evoking images from…
How can AI help in Transforming the Drug Development Cycle?
Artificial intelligence (AI) is transforming the pharmaceutical industry with extraordinary innovations that are automating processes at every stage of drug…
How Will AI Disrupt the Pharma Industry?
There is a lot of buzz these days about how artificial intelligence (AI) is going to disrupt the pharmaceutical industry….
Revolutionizing Drug Discovery with AI-Powered Solutions
Drug discovery plays a key role in the pharma and biotech industries. Discovering unmet needs, pinpointing the target, identifying the…
Leveraging the Role of AI for More Successful Clinical Trials
The pharmaceutical industry spends billions on R&D each year. Clinical trials require tremendous amounts of effort, from identifying sites and…
Understanding the Language of Life Sciences
Training algorithms to identify and extract Life Sciences-specific data The English dictionary is full of words and definitions that can be…
Understanding the Computer Vision Technology
The early 1970s introduced the world to the idea of computer vision, a promising technology automating tasks that would otherwise…
AI Is All Hype If We Don’t Have Access to
Summary: AI could potentially speed drug discovery and save time in rejecting treatments that are unlikely to yield worthwhile resultsAI has…